Fractional centered difference scheme for high-dimensional integral fractional Laplacian
نویسندگان
چکیده
In this work we study the finite difference method for fractional diffusion equation with high-dimensional hyper-singular integral Laplacian. We first propose a simple and easy-to-implement discrete approximation, i.e., centered scheme γth-order (γ≤2) convergence operator. Based on established then construct to solve equations analyze stability in energy norm (0<α≤2) maximum (1<α≤2). further present fast solver linear system which is obtained by discretization rectangular domain use fictitious extend non-rectangular one. Several numerical results are provided support our theoretical results.
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملA Central Difference Numerical Scheme for Fractional Optimal Control Problems
This paper presents a modified numerical scheme for a class of Fractional Optimal Control Problems (FOCPs) formulated in Agrawal (2004) where a Fractional Derivative (FD) is defined in the Riemann-Liouville sense. In this scheme, the entire time domain is divided into several subdomains, and a fractional derivative (FDs) at a time node point is approximated using a modified Grünwald-Letnikov ap...
متن کاملA Fractional Trapezoidal Rule Type Difference Scheme for Fractional Order Integro-differential Equation
A fractional trapezoidal rule type difference scheme for fractional order integro-differential equation is considered. The equation is discretized in time by means of a method based on the trapezoidal rule: while the time derivative is approximated by the standard trapezoidal rule, the integral term is discretized by means of a fractional quadrature rule constructed again from the trapezoidal r...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2020.109851